合作客戶/
拜耳公司 |
同濟大學 |
聯合大學 |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關新聞Info
-
> 溫度對甜菜堿短鏈氟碳表麵活性劑表麵張力、鋪展、發泡性能影響(三)
> Na2CO3溶液與模擬油反應不同時間後產物的界麵張力、剪切黏度(一)
> 水包油型(O/W)和油包水型(W/O)乳液結構與界麵穩定性
> 不同濃度6∶2氟調磺酸的表麵張力測定儀器及結果(二)
> 基於界麵張力和表麵張力測試評估商用UV油墨對不同承印紙張的表麵浸潤性差異(一)
> 表麵活性劑在口服液體製劑中的應用
> 吡蟲啉藥液、 阿維菌素、苦參堿表麵張力與接觸角的關係
> 降低表麵張力,可提高天然氣水合物的生長速率
> C72-MPB氟醚磷酸膽堿表麵活性劑表麵張力、泡沫/潤濕性能測定(一)
> 礦用塵克(C&C)係列除塵劑對大采高工作麵截割煤塵的降塵效率影響(一)
推薦新聞Info
-
> 反離子鹽KBr濃度對酰胺基陽離子Gemini表麵活性劑的表/界麵活性的影響(二)
> 反離子鹽KBr濃度對酰胺基陽離子Gemini表麵活性劑的表/界麵活性的影響(一)
> 典型離子型與非離子型起泡劑的界麵行為對泡沫性能的影響機製
> 新無氰白銅錫電鍍液及電鍍方法可降低表麵張力,促進鍍液對複雜工件的潤濕
> 一種耐超高溫酸液體係、製備方法及其應用
> 納米滲吸驅油劑種類、降低界麵張力和改變潤濕性的能力等機理研究(四)
> 複合驅中聚合物與陰離子表麵活性劑的協同作用研究
> 化學組成對無堿鋁硼矽OLED基板玻璃表麵張力的影響——結果、結論
> 化學組成對無堿鋁硼矽OLED基板玻璃表麵張力的影響——摘要、實驗方法
> 納米滲吸驅油劑種類、降低界麵張力和改變潤濕性的能力等機理研究(三)
油脂不飽和度對於蛋白質界麵特性與乳液穩定性的影響
來源:國家肉品中心 瀏覽 1129 次 發布時間:2024-09-13
脂肪替代類乳化肉製品近年來受到廣泛關注。在這類產品中,富含不飽和脂肪酸的植物油脂以預乳液的形式,部分或全部代替富含飽和脂肪酸的動物脂肪,以滿足消費者對於健康飲食的需求。但是,不同油脂的不飽和度差異會影響乳液穩定性,進而影響乳化肉製品的加工特性與感官品質。雖然早在1971年便有研究學者對油脂不飽和度影響乳液穩定性的規律進行了探究,該科學問題如今仍處於爭論之中。早期研究認為高不飽和度油脂有利於減小乳滴粒徑,促進形成均一、穩定的乳液。
近年來部分研究提出了截然相反的結論。這歸因於油脂不飽和度影響乳液穩定性的界麵機製仍未得到深入揭示。因此,闡明油脂不飽和度調控蛋白質乳化劑界麵行為的規律對於分析油脂不飽和度與乳液穩定性間的關係,進而改善脂肪替代類乳化肉製品品質至關重要。
本研究係統探討了油脂不飽和度對於蛋白質界麵特性(界麵構象轉變、吸附動力學、界麵流變特性、界麵層厚度)與乳液穩定性的影響。油酸、亞麻酸分別與十二烷混合,以調控極性一致,製備模型油脂;三種類型的蛋白質(纖維狀:肌原纖維蛋白,MP;球狀:乳清蛋白,WP;無規卷曲狀:酪蛋白酸鈉,SC)被選作為模型乳化劑。研究發現,蛋白質向高不飽和度油-水界麵處擴散較慢,導致界麵壓力較低。這造成高不飽和度油脂乳液初始粒徑較大。但是,蛋白質在高不飽和度界麵上解折疊程度較大,因此滲透和重排速率更高。這促進形成了更堅硬、更厚的界麵膜,從而賦予高不飽和度油脂乳液更佳的短期貯藏穩定性。另一方麵,高不飽和度界麵上更堅硬的界麵層在大振幅應變下易發生應力屈服,從而導致乳液長期穩定性下降。
研究成果
圖1.模型油脂的篩選:(a)油酸/亞油酸/亞麻酸與十二烷不同體積比例複配後的油-水界麵張力;(b)最終篩選得到的兩種模型油相的界麵張力(DD OA和DD LNA);(c)相同體積下,DD OA與DD LNA分子內的碳-碳雙鍵比例
圖2.(a)MP,(b)WP和(c)SC在不同飽和度界麵上吸附時的界麵壓力。*p<0.05,**p<0.01,***p<0.001,ns無顯著差異
圖3.(a-b)油脂不飽和度影響蛋白質界麵吸附動力學的機製示意圖;界麵(c)MP,(d)WP和(e)SC的歸一化前表麵熒光光譜。*p<0.05,**p<0.01,***p<0.001
圖4.線性粘彈區域內(振幅10%),不同飽和度界麵上(a)MP,(b)WP和(c)SC界麵膜的彈性模量;(d)MP,(e)WP和(f)SC界麵膜的膨脹模量-界麵壓力關係圖。*p<0.05,**p<0.01,***p<0.001
圖5.非線性粘彈區域內(振幅30%),不同飽和度界麵上(a)MP,(b)WP和(c)SC界麵膜的利薩茹圖像;通過GSD算法得到的(d)MP,(e)WP和(f)SC利薩茹圖像的τ1,τ2,τ3,τ4分解組分;根據τ1,τ2,τ3,τ4計算得到的(g1-g4)MP,(h1-h4)WP和(i1-i4)SC的Eτ1L,Eτ1M,Eτ4模量與S-因子。*p<0.05,**p<0.01,***p<0.001
圖6.QCM-D試驗:(a)MP,(b)WP和(c)SC在不同飽和度界麵上吸附時的共振頻率遷移(Δf)與能量耗散遷移(ΔD);(d)MP,(e)WP和(f)SC在不同飽和度界麵上形成的吸附層厚度
圖7.乳液的形成特性:(a)MP,(e)WP和(i)SC乳液的粒徑分布;(b)MP,(f)WP和(j)SC乳液的D3,2與D4,3;(c-d)MP,(g-h)WP和(k-l)SC乳液的激光共聚焦圖像。*p<0.05,**p<0.01,***p<0.001
結論
蛋白質向高不飽和度界麵處擴散更慢,導致該處界麵壓力較低。因此,高不飽和度油脂乳液初始粒徑較大。相反,蛋白質在高不飽和度界麵上滲透、重排更快,這是因為蛋白質在該處解折疊程度增加,暴露出更多疏水基團;這進一步促進界麵蛋白的橫向互作和3D自組裝,形成彈性更高、厚度更大的界麵膜;此外,GSD分析證實在高不飽和度界麵上,蛋白質吸附層在大振幅應變下更加堅硬。因此,高不飽和度油脂乳液的短期穩定性更佳。但是,較大的硬度會降低界麵膜的延展性和靈活性,導致應力屈服和破裂現象的發生,使得高不飽和度油脂乳液在長期貯藏過程中較快發生失穩。