合作客戶/
拜耳公司 |
同濟大學 |
聯合大學 |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關新聞Info
-
> 液滴中心液態區表麵張力法研究PTFE膠粒與NaCl混合液滴圖案形成原理
> 微膠囊聚合物溶液對延展型表麵活性劑界麵張力的影響(一)
> 考慮界麵張力、液滴尺寸和液滴變形影響的攜液臨界模型構建(一)
> 氨基改性矽油柔軟劑的表麵張力、透水率、分層測試(三)
> 不同PQAI溶液靜態/動態表麵張力變化及對脈動熱管性能影響(二)
> 表麵張力大容易潤濕嗎,表麵張力的影響因素有哪些
> 桐油基衍生物鈉鹽的表麵張力、CMC值測定、乳液穩定性、固化膜性能測試(二)
> 烷基糖苷檸檬酸單酯二鈉鹽水溶液的動態表麵張力測定及影響因素(上)
> 生物表麵活性劑產生菌菌體密度、細胞疏水性與發酵液pH及表麵張力的關係(二)
> 兩種烷基咪唑亞磷酸酯離子液體熱穩定性、表麵張力測定(三)
推薦新聞Info
-
> 反離子鹽KBr濃度對酰胺基陽離子Gemini表麵活性劑的表/界麵活性的影響(二)
> 反離子鹽KBr濃度對酰胺基陽離子Gemini表麵活性劑的表/界麵活性的影響(一)
> 典型離子型與非離子型起泡劑的界麵行為對泡沫性能的影響機製
> 新無氰白銅錫電鍍液及電鍍方法可降低表麵張力,促進鍍液對複雜工件的潤濕
> 一種耐超高溫酸液體係、製備方法及其應用
> 納米滲吸驅油劑種類、降低界麵張力和改變潤濕性的能力等機理研究(四)
> 複合驅中聚合物與陰離子表麵活性劑的協同作用研究
> 化學組成對無堿鋁硼矽OLED基板玻璃表麵張力的影響——結果、結論
> 化學組成對無堿鋁硼矽OLED基板玻璃表麵張力的影響——摘要、實驗方法
> 納米滲吸驅油劑種類、降低界麵張力和改變潤濕性的能力等機理研究(三)
溫度、截斷半徑、模擬分子數對水汽液界麵特性的影響規律(一)
來源:河南化工 瀏覽 1038 次 發布時間:2024-11-28
水是許多化學反應過程廉價的反應溶劑,也是化工生產過程常用的工質。汽液界麵行為是研究水相變傳熱問題的基礎。目前,工程上許多有關水蒸發、水蒸氣冷凝、加熱幹燥等相變傳熱數據仍主要依賴於實驗。隨著分子模擬技術的發展,采用分子動力學模擬方法,從分子水平揭示水汽液界麵特性的研究,引起了國內外許多學者的極大關注。本文擬采用SPC模型,對水汽液界麵特性進行平衡分子動力學模擬研究,探討溫度、截斷半徑、模擬分子數對水汽液界麵特性的影響規律。
1模擬方法
1.1模擬體係的建立
采用直角坐標係,模擬盒子如圖1所示,液相位於模擬盒子的中央,汽相分別處於液相的上下兩側,整個模擬體係中有兩個汽液界麵。模擬盒子在x、y方向的長度為Lx=Ly=L,在z方向的長度為Lz=3L。
圖1模擬盒子的示意圖
對於水的分子動力學模擬研究,采用的勢能模型有很多,如SPC、SPC/E、TIP3P、TIP4P、TIP5P等。本文采用SPC剛體勢能模型,假設隻有不同水分子的O原子之間存在短程L-J勢能,不同水分子的H原子之間以及H原子和O原子之間存在長程靜電勢能。水分子的總勢能由短程L-J勢能和長程靜電勢能兩部分組成,如式(1)所示。SPC模型的勢能參數如表1所示,其中qH和qO分別為水分子中H原子和O原子所帶電荷,rOH為H原子與O原子之間的鍵長,θ為兩個O—H鍵之間的角度(即鍵角),σO為O原子之間L-J勢能的尺度參數,εO為O原子之間L-J勢能的能量參數,e為基本電荷(1e=1.6×10-19C),kB為Boltzmann常數(kB=1.3806×10-23J/K)。
表1 SPC模型的參數值
式中:US為總勢能,kJ/mol;為長程靜電勢能,kJ/mol;為短程L-J勢能,kJ/mol;N為模擬分子個數;n為每個水分子內受靜電作用的作用點數量;i、j為模擬係統內2個不同的水分子;a、b為分子受靜電作用的作用點;為i分子中a作用點所帶電量,C;為j分子中b作用點所帶電量,C;為i分子中a作用點與j分子中b作用點之間的距離,m;εR為真空中介電常數,εR=8.854×10-12F/m;i分子和j分子兩個O原子之間的距離,m;σO為O原子之間L-J勢能的尺度參數,m;εO為O原子之間L-J勢能的能量參數,kJ/mol。
對於長程靜電勢能,采用作用場法。為避免L-J勢能和靜電勢能在邊界處發生截斷而不連續,導致Hamiltonian函數不守恒問題。采用移位法來處理兩種勢能,如方程(2)和(3)所示。
式中:rc為截斷半徑,m;U為校正後的勢能,kJ/mol;Uc為截斷半徑處的勢能,kJ/mol;εS為環境介電常數,通常取εS=∞,因此,式(3)可以簡化為方程(4)。
1.2模擬細節
初始時刻,水分子初始位置為各分子的質心以麵心立方晶格(FCC)均勻排列在邊長為L的液相模擬盒中,液相區上下兩側的汽相區為真空。水分子質心(即O原子所在位置)為分子坐標的原點,H和O原子均在xy平麵上,其中一個H原子位於x軸的正方向上,另一個H原子位於xy平麵的第二象限區,O和H的位置矢量分別為rO(0,0,0),rH(0.3159σO,0,0),rH(-0.1053σO,0.2978σO,0)。水分子初始平動速度由隨機數發生器隨機給定,初始轉動速度為0。
在模擬過程中,對物理量進行無量綱化處理;x、y、z三個方向均采用周期性邊界條件;保證係統的體積V、溫度T和模擬分子數N保持不變,采用Woodcock變標度恒溫法實現係統恒溫;不斷對體係質心進行矯正,使之處於坐標原點;將模擬盒子沿z方向劃分為300個等厚度的薄片;模擬時間步長為0.8fs,總模擬步數為60萬步,其中前20萬步用於使係統達到平衡,後40萬步用於統計界麵特性參數。
模擬計算程序是由本課題組采用Fortran語言編寫的,其模擬流程如圖2所示。模擬運算中所涉及到的方程如式(5)~(13)所示]。
圖2模擬流程簡圖
式中:U(k)為第k個切片的勢能,Uij(k)為i、j分子在第k個切片內的勢能,nk為第k個切片的分子數,Vs1為切片的體積,ρ(k)為第k個切片的數密度,rij為i分子和j分子之間的距離,xij、yij、zij為rij分別在x、y、z方向上的分量,、、分別為i分子中的a原子和j分子中的b原子之間的距離在x、y、z方向上的分量,U()為勢函數U()對的導數,PN(k)、PT(k)分別為第k個切片的法向應力和切向應力,γ(k)為第k個切片的局部界麵張力,Δz為切片厚度,γ為汽液界麵張力,〈〉為係統統計平均,ρV、ρL分別為汽相主體、液相主體密度,NL、NV分別為液相、汽相切片數,UV、UL分別為汽相主體、液相主體勢能(L-J勢能、靜電勢能、總勢能),z(k)為第k個切片的位置,z0為Gibbs汽液界麵的位置,d為汽液界麵厚度。在統計切片內法向應力和切向應力時,若相互作用的原子a,b均在同一切片內,則計算全部作用;若相互作用原子隻有一個原子在某一切片內,則計算一半作用。